Web Browser

Friday, April 12, 2013

5 New Technologies That Will Change Everything Part II


Panasonic and other makers of high-definition TVs are looking to faux 3D technology to provide stereoscopic depth--and a reason for consumers to buy a newer set.
Disconnecting your active-shutter 3D glasses from a charger, you slip them on, eager to check out your downloaded copy of Hulk VI: Triumph of the Stretch Fabrics, the latest entrant in the green antihero's film franchise. You drop into a comfy chair, tell the kids it's time for a movie, and twist the heat pouch on a bag of popcorn to start it popping. The kids grab their own glasses and sit down to watch the Hulk knock the Predator practically into their laps!
When television makers introduced HDTVs, it was inevitable that they would figure out a way to render the technology obsolete not long after everyone bought a set. And they have. The next wave in home viewing is 3DTV--a 2D picture with some stereoscopic depth.
As 3D filmmaking and film projection technology have improved, Hollywood has begun building a (still small) library of depth-enhanced movies. The potential to synthesize 2D movies into 3D could feed demand, however--the way colorizing technology increased interest in black-and-white films in some circles in the 1980s. For movies based on computer animation--such as Toy Story 3D, a newly rendered version of the first two movies in the series--it's already happening.
The promise of 3D is a more immersive, more true-to-life experience, and substantively different from almost anything you've watched before. In commercial theaters, 3D projection typically involves superimposing polarized or distinctly colored images on each frame and then having viewers wear so-called "passive" glasses that reveal different images to each eye. The brain synthesizes the two images into a generally convincing notion of depth.
In contrast, 3D at home will almost certainly rely on alternating left and right views for successive frames. HDTVs that operate at 120Hz (that is, 120 cycles of refresh per second) are broadly available, so the ability to alternate left and right eye images far faster than the human eye can follow already exists. Fundamental industry standards are in place to allow such recording, says Alfred Poor, an analyst with GigaOm and the author of the Web site HDTV Almanac.
Viewing 3DTV displays will require "active" glasses that use rapidly firing shutters to alternate the view into each eye. Active glasses are expensive today, but their price will drop as 3D rolls out. Meanwhile, designers are in the development phase of producing a 3D set that doesn't require the glasses.
Sony and Panasonic have announced plans to produce 3D-capable displays, and Panasonic recently demonstrated a large-screen version that the company expects to ship in 2010. As happened when HDTVs rolled out, premium 3DTVs will appear first, followed by progressively more-affordable models.
Creating and distributing enough 3D content to feed consumers' interest may be more of an challenge. Poor noted that filmmakers are currently making or adapting only a handful of features each year for 3D. But techniques to create "synthetic 3D" versions of existing films (using various tracking, focus, and pattern cues for splitting images) could fill the gap.
Existing terrestrial cable and IPTV networks should be able to distribute 3D content. The bandwidth that such networks use to deliver typical HD broadcasts will be adequate for delivering 3D video once the networks upgrade to newer video compression techniques. Satellite may face a more difficult road, since such systems already use the best levels of compression.
For physical media playback, Blu-ray can store the data needed, and 3D Blu-ray players are already on the drawing board. No fundamental changes in Blu-ray will be necessary, so the trade group that created the standard is focusing compatibility--such as ensuring that a 2D TV can play a 3D disc.
Standards issues might not end up being very troublesome, so long as the 3DTVs are flexible enough. An industry group is working on setting some general parameters, much as digital TV was broken up into 480, 720, and 1080 formats, along with progressive and interlaced versions. A 3DTV may need to support multiple formats, but all will involve alternating images and a pair of shutter-based glasses.
Poor expects that 3DTV will be but a minor upgrade to existing HDTV sets. The upgraded sets will need a modified display controller that alternates images 60 per second for each eye, as well as an infrared or wireless transmitter to send synchronization information to the 3D glasses.

"Augmented Reality" in Mobile Devices

Augmented Reality
Babak Parviz, a professor at the University of Washington specializing in nanotechnology, is working on a bionic contact lens that would paint imagery and information directly on the eye to augment reality.
You enjoyed Hulk VI so much on your home theater setup that you decided to see it on the big screen. The movie is still playing, but you’re not sure how to find the movie theater where it’s playing. In the old days, you might have printed out directions from MapQuest; but nowadays you don't need to do anything so primitive. Instead, you dock your smartphone on the dashboard as you slip into your car, and instantly it superimposes driving directions to the theater are superimposed on your car's windshield. As you approach your destination, you see a group of tall buildings. Superimposed on the windshield over one of the buildings is the building’s name, the name of the movie theater inside it, the name Hulk VI, and a countdown to show time. "Turn left in 100 yards," the navigator speaks through your stereo as a large turning arrow appears, guiding you into the parking structure.
In Neal Stephenson's book Snow Crash, "gargoyles" are freelance intelligence gatherers who have wired themselves to see (through goggles that annotate all of their experiences) a permanent overlay of data on top of the physical world. In less immersive fashion, we may all become gargoyles as “augmented reality” becomes an everyday experience.
Augmented reality is a catchall term for overlaying what we see with computer-generated contextual data or visual substitutions. The point of the technology is to enhance our ability to interact with things around us by providing us with information immediately relevant to those things.
At work, you might walk around the office and see the name and department of each person you pass painted on them--along with a graphical indicator showing what tasks you owe them or they owe you. Though many case scenarios involve “heads-up” displays embedded in windshields or inside eyeglasses, the augmented reality we have today exists primarily on the “heads-down” screens of smartphones.
Several companies have released programs that overlay position- and context-based data onto a continuous video camera feed. The data comes from various radios and sensors built into modern smartphones, including GPS radios (for identifying position by satellite data), accelerometers (for measuring changes in speed and orientation), and magnetometers (for finding position relative to magnetic north).
In an application called Nearest Places, the names and locations of subway stops, parks, museums, restaurants, and other places of interest are shown on top of an iPhone's video feed. As you walk or turn, the information changes to overlay your surroundings.
"Smartphones and the related apps are the trailblazers for augmented reality," says Babak Parviz, a professor at the University of Washington who specializes in nanotechnology. "In the short to medium term, my guess is that they will dominate the field."
Other prototype applications display information dropped at particular coordinates as 3D models that the user can walk around, or as animations whose details update in 3D relative to the user's position. But the technology for those apps isn't ripe yet; handhelds require a more-precise positioning mechanism in order to handle that kind of data insertion. Fortunately, each smartphone generation seems to include more and better sensors.
In other realms, augmented reality may serve to provide not just additional information, but enhanced vision. One day, infrared cameras mounted on the front of a car will illuminate a far-away object represented as a bright-as-day image on an in-windshield display. Radar signals and wireless receivers will detect and display cars that are out of sight; and one piece of glass will host GPS and traffic reporting.
Leaping past displays, Parviz and his team are working on ways to put the display directly on the eyeball. They’re trying to develop a technology for embedding video circuitry into wearable contact lenses. While wearing such contact lenses, you would see a continuous, context-based data feed overlaid on your field of vision.
Before Parviz's lenses become a reality, augmented reality is likely to become a routine navigation and interaction aid on mobile devices. In addition, game developers may use the technology to overlay complete digital game environments over the reality that gamers see around them.

Post a Comment